Как выращивают крупнейшие в мире алмазы: сделано в России. Все про искусственные бриллианты

Бояться пришествия искусственных алмазов стоит не группе De Beers, а компании Intel

Метод Gemesis Высокое давление, высокие температуры. Кристалл вырастает в камере, имитирующей условия земной коры.

Метод Apollo Химическое осаждение паров. Кристалл получается, когда из облака плазмы идет дождь, который попадает на алмазную подложку.

Искусственные микроалмазы для промышленного применения.

Современная сенсация — синтетические ювелирные алмазы

Аарон Вейнгаартен смотрит на желтый алмаз сквозь ювелирную лупу. Мы в Антверпене, в гостиной Вейнгаартена, полной мрамора и позолоты, на самом краю района ювелиров, в самом центре алмазной вселенной. Почти 80% всех алмазов и бриллиантов в мире проходят через руки бельгийских торговцев камнями вроде Вейнгаартена, который носит окладистую бороду и черный костюм ортодоксального еврея. «Камень очень редкий, — бормочет себе под нос ювелир, — желтые алмазы такого оттенка найти очень непросто. Этот стоит 10, может, 15 тысяч долларов». Я сообщаю ему, что в кармане у меня два точно таких же. Он кладет камень на стол и в первый раз смотрит на меня серьезно. Я выкладываю еще два камня. Все они одного цвета и размера. Вероятность найти три одинаковых желтых алмаза примерно такая же, как бросить монету 10 тысяч раз и ни разу не увидеть орла. «Это что, кубическая окись циркония (в России этот камень больше известен под названием «фианит»)?» — не особенно надеясь на положительный ответ, спрашивает Вейнгаартен. Я отвечаю, что все алмазы — настоящие, их изготовила машина, находящаяся во Флориде. Общая стоимость производства не превысила сотни долларов. Ювелир ерзает на стуле, неотрывно следя за камнями, которые лежат на столе в его гостиной. «Если их нельзя отличить, индустрии придет конец», — резюмирует он.

При температуре 1200оС под давлением примерно 50 тыс. атмосфер углерод кристаллизуется в самый твердый из известных материалов. Именно так сформировались алмазы глубоко в земной коре 3,3 млрд. лет назад. Воссоздать такие условия в лаборатории непросто, но попыток предпринималось немало. Начиная с середины XIX века десятки «алхимиков» пострадали в результате несчастных случаев, происшедших при попытках изготовить алмазы. Последние десятилетия принесли успех, пускай скромный. Начиная с 1950-х инженеры научились вырабатывать мелкие кристаллы для промышленного применения — покрытия пил, буровых коронок и шлифовальных кругов. Но летом 2003 года на рынок попала первая волна искусственных алмазов ювелирного качества. Делать их научились две компании — Gemesis во Флориде и Apollo Diamond в Бостоне.

Неожиданный выход на рынок искусственных камней грозит необратимо трансформировать алмазную индустрию, ежегодный оборот которой оценивается в $7 млрд. Но важнее другое — массовое производство алмазов открывает двери разработке алмазных полупроводников. Оказывается, алмаз — не только самый твердый камень на земле, он также обладает самой высокой теплопроводностью. Сегодняшние полупроводники греются примерно до 100оС, а при дальнейшем нагревании просто перестают работать. Алмазные микросхемы, напротив, можно греть до температур, когда обычный кремний уже давно бы расплавился.

Бригадный генерал

Международный концерн De Beers уже 115 лет как монополизировал алмазный бизнес, уничтожая конкурентов путем регулирования предложения алмазов на рынке. За свою долгую историю De Beers пережила многочисленные африканские восстания, боролась с американским антимонопольным законодательством, уклонялась от обвинений в эксплуатации несчастных рабочих третьего мира. Не сломило ее монополию и открытие многочисленных алмазных месторождений в Австралии, Канаде и Сибири. У компании громадный рекламный бюджет и полный Контроль над каналами распространения камней. Но чего у De Beers нет — так это отставного бригадного генерала Картера Кларка.

Картеру Кларку 75 лет. Он ушел в отставку более 30 лет назад, но командных навыков так и не утратил. Когда генерал появляется в офисе компании Gemesis, которую он основал в 1996 году с целью наладить массовое производство алмазов, сотрудники встают в приветствии. Иначе нельзя. Особенно учитывая, что «Генерал», как его тут прозвали, постоянно отдает своим подчиненным честь, как будто они — его армия, которая идет в бой. «Я был в Корее и Вьетнаме», — сообщает Генерал, отдав мне честь в приемной. — Так что уж поверьте, справлюсь и с алмазным бизнесом". Кларк показывает мне свою новую фабрику, расположенную в промышленной зоне недалеко от города Сарасота (Флорида). В здании планируется разместить машины для производства алмазов, которые похожи на медицинские приборы поддержания жизни. В строю 27 таких машин. Компания Gemesis надеется вводить в строй по 8 штук ежемесячно. В этом ангаре их число должно достичь 250-ти. Другими словами, Gemesis готовит первый удар по алмазному бизнесу.

Кларк не собирался становиться алмазным королем. Идея пришла случайно, во время его поездки в Москву в 1995 году. Его тогдашняя компания — Security Tag Systems — была одной из первых, кто привез в Россию метки, мешавшие воровать вещи из магазинов. Так он познакомился с Юрием Семеновым, который руководил одним из научно-технических бюро, по государственной программе занимавшихся продажей военных технологий советских времен западным инвесторам. Но у Семенова была идея получше — он предложил Генералу выращивать алмазы. Через несколько часов у Кларка на столе лежал проект двухтонного агрегата, который при помощи гидравлики и электричества фокусировал все возрастающие объемы тепла и давления в центре сферы. Генералу сообщили, что прибор воссоздает условия, существующие на глубине 150 км под землей, где и формируются алмазы. Поместите осколок алмаза в земную кору, добавьте углерода, и алмаз станет расти. В 1954 году компания General Electric именно так и поступила, прессом в 400 тонн выдавив душу из углерода. Устройство General Electric позволяло вырабатывать недорогую алмазную пыль для промышленного применения, а в начале 1970-х компания научилась делать алмазы весом целых 2 карата. Но для этого требовалось столько усилий и электроэнергии, что получалось дороже, чем купить настоящий алмаз из шахты. Русские утверждали, что их конструкция недорога, потребляет не больше энергии, чем несколько ламп накаливания, и будет выдавать по трехкаратному камню раз в несколько дней. И что Генерал сможет получить такую машину всего за $57 тыс.

Три месяца спустя, зимой, Кларк вернулся в Москву. Его встретили телохранители и отвезли на склад под Москвой. В холодном, неотапливаемом помещении он наблюдал, как Николай Полушин — один из сибирских ученых, придумавших устройство — поднял верхнюю половинку сферы, достал небольшой керамический куб, ударил по нему молотком и передал Кларку небольшой алмаз. Все улыбались. В конце концов Генерал заказал три машины и попросил Семенова отправить их во Флориду.

Русские машины

Но существовали и две проблемы. Во‑первых, никто в США не умел работать с такими машинами. Эту проблему Кларк решил, переселив команду русских во Флориду. Во‑вторых, русские и сами-то не слишком хорошо овладели процессом. Работу машины пока нельзя было назвать надежной. Генералу и его новой компании Gemesis срочно была нужна помощь. Он обратился к иранцу по имени Реза Аббашайн, эксперту в области кристаллов, который возглавлял кафедру материаловедения в университете штата Флорида. Аббашайн согласился доработать машину. При помощи своих студентов он выкинул всю русскую автоматику и установил компьютерные системы. Коллектив заменил блок питания и методично отслеживал малейшие нюансы работы машины. Учитывая, что приходилось одновременно контролировать более 200 параметров, работа была нелегкой.

К 1999 году усилиями Аббашайна у Генерала были очень высококачественные камни. И Кларк полетел в Лондон, чтобы показать их группе потенциальных инвесторов. Вместо того чтобы просто высыпать груду алмазов перед ними на стол, он отправился к ювелиру в Хаттон Гарден, алмазный район британской столицы, и попросил, чтобы его камни оправили в кольца. Ювелир согласился, и Кларк вернулся в свой отель. Зазвонил телефон. На проводе была компания De Beers. По словам Кларка, чиновника из De Beers Джеймса Эванса Ломби предупредили о синтетических камнях менее чем через два часа после их прибытия к ювелиру. Ломби попросил о встрече с Генералом и приехал прямо в гостиницу, где и состоялась их беседа за чаем под звуки пианино и скрипичного дуэта.

Представители компании De Beers отказываются говорить об этой встрече — да и обо всем остальном, касающемся этой истории — но Кларк рассказывает, что просто выложил свои козыри. «Когда я сообщил, что собираюсь открыть фабрику по массовому производству таких камней, чиновник побелел. В De Beers знали о существовании технологии, но надеялись, что она так и останется в России и никто не сможет довести ее до ума. К концу разговора его руки тряслись», — вспоминает Кларк.

Но De Beers не сдавалась. В течение 2000 года картель запустил «Программу защиты камней», цель которой — информировать покупателей алмазов о том, что на рынке появились искусственные камни, и стал поставлять свои проверочные машины (модели DiamondSure и DiamondView) в крупнейшие в мире ювелирные лаборатории. Раньше такие лаборатории анализировали и сертифицировали цвет, прозрачность и размер камней. Теперь их просят также отличать рукодельные камни от ископаемых. Прибор DiamondSure просвечивает камень и анализирует показатель преломления. Если камень кажется подозрительным, его проверяют на приборе DiamondView, который выясняет внутреннюю структуру алмаза. Еще в 1996 году ученые De Beers писали, что идеально было бы иметь простой прибор, который смог бы отличать искусственные алмазы от натуральных. Но, к сожалению, в ближайшее время такой прибор создать не удастся, поскольку синтетические алмазы — все равно алмазы, как химически, так и физически.

Синтетика

Летом 2001 года Аббашайн сообщил Генералу, что готов, наконец, к массовой выработке алмазов. Оставалось принять одно, последнее решение. Каждая машина могла вырабатывать по одному желтому камню весом три карата каждые три дня (бесцветные камни вырабатываются дольше). Учитывая их редкость, удельная цена карата желтых алмазов настолько выше, что позволить себе такие камни могут только очень богатые люди. К тому же за последние годы цветные алмазы вошли в моду (в обручальном кольце у Дженнифер Лопез, например, был розовый алмаз). Кларк решил, что вызовет наибольший шум, принеся желтые камни на рынок американского «среднего класса». Он собирался конкурировать как по цене (продавая свои камни на 10%-50% дешевле), так и по стилю. И, в случае победы на рынке желтых камней, перейти на рынок бесцветных. Но алмазная индустрия нанесла ответный удар. В начале 2002 года De Beers начала поставки улучшенных моделей DiamondSure. Тем временем лоббисты добились требования Федеральной торговой комиссии США, чтобы Gemesis маркировала свои камни как синтетические.

Gemesis строит свой маркетинг на утверждении, что синтетические камни лучше натуральных. Генерал предлагает называть свои алмазы «культивированными». Это намеренная отсылка к бешено популярному (и гораздо более ценному, чем натуральный) искусственному жемчугу.

«Если вы предложите женщине выбрать между 2-каратным и 1-каратным алмазом, что она, по‑вашему, выберет при прочих равных? — вопрошает Генерал. — Важно ли ей, какие из них натуральные? Будут ли к ней подходить с вопросами о натуральности камней в ее украшениях?» «Да ни за что!» — отвечает он сам себе. С ним не согласен Джеф Ван Ройен, который представляет Высший алмазный совет Бельгии: «Если люди по‑настоящему любят друг друга, они дарят настоящие камни. Не может быть символом вечной любви нечто, созданное на прошлой неделе».

Это и есть официальная линия De Beers. Ван Ройену не нравится аналогия с искусственным жемчугом, скорее уж речь может идти о синтетических изумрудах, которые появились в огромных количествах в середине 1970-х. Вначале цена была очень высокой, но ювелирные лаборатории быстро поняли, что отличить синтетику можно с помощью обычного микроскопа. Цена упала, и теперь они стоят не более 3% от натуральных.

Новая угроза

Ван Ройен рассказал мне и о другой угрозе. Ходят слухи о новой методике выращивания алмазов ювелирного качества. Процесс представляет собой химическое осаждение паров (chemical vapor deposition — CVD) и уже более десятилетия используется для покрытия больших поверхностей микроскопическими кристаллами алмазов. Эта технология основана на превращении углерода в плазму, которая затем осаждается на подложку в виде алмазов. Ранее существовала только одна проблема — никто не мог научиться выращивать таким образом цельный алмаз. «По крайней мере, до сих пор было так», — добавляет Ван Ройен. Компания Apollo Diamond, темная лошадка из Бостона, по слухам, научилась. Если это правда — индустрии и правда грозит крах, так как алмазы, созданные по технологии CVD, можно выращивать огромными брикетами, а после резки и полировки они будут неотличимы от натуральных камней. «Но таких алмазов никто в Антверпене не видел, так что мы даже не знаем, существуют ли они на самом деле», — говорит Ван Ройен. Тогда я достаю из кармана коробочку от 35-мм фотопленки и кладу ее на стол. Внутри, на подушечках, лежат два маленьких алмаза. «Поверьте мне, они существуют», — сообщаю я ученому.

Темная лошадка

За три дня до поездки в Бельгию я слетал в Бостон и встретился с Бриантом Линаресом, президентом компании Apollo Diamond. После 45-ми-нутной беседы в машине он, видимо, решил, что со мной все в порядке и я не шпион De Beers. Мы вошли в помещение, и я увидел человека, с головы до ног одетого в герметичный костюм, хорошо известный благодаря рекламе Intel. «Добро пожаловать в компанию Apollo Diamond», — подтолкнул меня Линарес и быстро закрыл дверь. Он выдал мне герметичный костюм, в том числе бутсы, очки и шапочку для волос. В комнате были трое в похожей одежде. Они стояли вокруг цилиндрического аппарата, похожего на промышленный кофейник, оборудованного засовом на иллюминаторе. Из окошка светило сверхъестественным зеленым. Я заглянул через стекло. Там, за мерцающим зеленым облаком, росли четыре алмаза. «К этому я шел очень долго», — рассказал мне один из людей, стоявших возле машины. Это Роберт Линарес, отец Брианта. В 1980-х он был известным исследователем в области сложных полупроводников. Его компания, Spectrum Technology, известна благодаря вводу в производство технологии использования пластин арсенида галлия в качестве полупроводниковой подложки, заменившей кремний и позволившей сотовым телефонам стать меньше и использовать большую полосу частот. Линарес-старший продал свою компанию корпорации PacifiCorp и в 1985 году исчез из мира полупроводников. Оказывается, на свои деньги он построил секретную лабораторию для исследования алмазов. «Я понимал, что рано или поздно алмазы станут совершенными полупроводниками, хоть никто в это и не верил. После продажи компании я мог делать что хотел, и я потратил 15 лет на собственные исследования», — рассказал Линарес.

Чтобы вырастить монокристалл алмаза методом CVD, сначала нужно угадать точное сочетание температуры, плотности газа и давления, «ту самую точку», в которой начинается создание единого кристалла. В противном случае на вас прольется дождь из несчетного количества мелких алмазов. Найти «ту самую точку» примерно так же непросто, как найти конкретную песчинку на берегу. Из миллионов комбинаций подходит только одна. И в 1996 году Линарес ее нашел. А в июне 2003 года он, наконец, получил патент на свой процесс и уже вырабатывает безупречные алмазы, планируя вскоре начать продажу камней на ювелирном рынке. Но это — только первый шаг. На деньги от продажи камней Роберт и Бриант Линаресы рассчитывают заняться разработкой алмазных полупроводников. Неудивительно, что алмазная индустрия не в восторге от их планов, в чем убедился Линарес-младший пять лет назад, посетив конференцию в Праге. Во время перерыва к Линаресу подошел человек и посоветовал быть осторожнее. «Он сказал, что исследования моего отца — верный путь получить пулю в голову», — вспоминает Линарес.

Пять долларов за карат

Алмазная индустрия, вообще-то, гораздо больше боится камней, созданных по технологии CVD, чем камней от Gemesis, хоть последняя и представляет непосредственную угрозу. По идее, метод CVD даст чрезвычайно чистый кристалл. Алмазы от Gemesis растут в металлическом расплаве, и небольшие частички металлов попадают в решетку алмаза при его росте. Алмазы CVD, напротив, осаждаются, образуя почти стопроцентно чистый кристалл, и поэтому неотличимы от натуральных. Но наибольший потенциал технологии CVD лежит в использовании их в компьютерах. Если алмаз станет применим в полупроводниках, потребуется метод недорогого выращивания камней в больших пластинах. (Кремниевые пластины, которые использует Intel, например, имеют диаметр около 30 см). А размер CVD ограничен только размером зерна, которое заложат в машину. Процесс начинается с квадратной пластины. Камень растет в форме призмы, где верхняя часть слегка шире основания. За годы, прошедшие с момента обнаружения «той самой точки», компания Apollo училась выращивать алмазы все большего размера, отрезая верхушку от одного и используя ее как базу для другого алмаза. На сегодня компания способна вырабатывать 10-мм пластины, но за 5 лет планирует достичь 10 см. Карат стоит около $5.

Но вернемся в Высший алмазный совет. Я вытряхиваю камни от Apollo на стол. Ван Ройен неуверенно поднимает один из них длинным пинцетом и кладет под микроскоп. «Невероятно! Можно рассмотреть?» — спрашивает он. Я соглашаюсь оставить ему камни на ночь. Утром Ван Ройен выглядит уставшим. Он признает, что почти всю ночь изучал камни. «Думаю, что отличить их все же смогу: они слишком идеальны для натуральных алмазов. В природе все имеет изъяны. А у этого камня их практически нет», — резюмирует ученый. И добавляет на прощание: «В ваших руках нечто, чего нет больше ни у кого в Антверпене. Если хотите понять, насколько на самом деле важны эти камни, поговорите с Джимом Батлером из ВМФ США».

Алмазный Pentium

Джим Батлер возглавляет группу при ВМФ, которая занимается исследованием алмазов. Батлер изучал процесс CVD на протяжении 16 лет и повидал немало разочарований за этот срок. Но сегодня он — оптимист. Существовали три проблемы на пути к алмазному процессору. И похоже, все три готовы пасть. Во‑первых, алмазы считаются бешено дорогими из-за политики De Beers, которая не отпускает цены на рынке. Синтетические алмазы решат эту проблему. Во‑вторых, не было надежного источника больших и чистых камней. На ископаемые алмазы рассчитывать нельзя, так как невозможно обеспечить одинаковые электрические характеристики камней. Алмазы от Apollo решают и эту задачу. В-третьих, была проблема, над которой ломали головы материаловеды всего мира. Чтобы сделать микросхему, нужны полупроводники p- и n-типа. Алмаз — естественный изолятор, он не проводит электрический ток. Gemesis и Apollo смогли ввести в кристаллическую решетку алмаза бор, который создает нужный тип проводимости p-типа. Но до сих пор никто не смог создать в алмазе проводимость n-типа. При встрече со мной в Вашингтоне Батлер едва мог сдержать ликование. Он сообщил мне, что совершен прорыв — в июне 2003 года, совместно с учеными из Израиля и Франции, Батлер объявил о том, что найден способ инвертировать природную проводимость бора и создавать легированные бором алмазы n-типа. «Таким образом, мы получили p-n-пару. Другими словами, работающий полупроводник. На горизонте уже алмазный Pentium!» — радуется Батлер.

Однако ученого огорчают настроения в компьютерной индустрии США. Если не поторопиться, считает он, японцы и европейцы вырвутся вперед. И действительно, в разговорах с главными шишками компании Intel выяснилось, что они даже не знали о последних достижениях в области алмазных полупроводников. Кришнамурти Сумианат, один из боссов компании Intel, говорит, что освоение нового материала занимает около 10 лет, а в кремний вложено столько, что отказываться от него компания пока не намерена.

Но в один прекрасный день выхода у изготовителей микросхем не останется. Бернард Вунеш, профессор материаловедения в Массачусетсском технологическом институте, прямо говорит: «Если закон Мура не падет, микросхемы будут становиться все горячее и горячее. И кремний в какой-то момент просто потечет. Алмаз — вот решение проблемы».

Минералы и полезные ископаемые имеют свойство заканчиваться в недрах земли. Но у людей есть потребность в использовании различных минералов, в том числе и алмазов. Поэтому с развитием технологий начинается разработка и переход на искусственную добычу камней. Искусственные алмазы практически ничем не отличаются на сегодняшний день от натуральных минералов. По виду камни сложно отличить даже геммологам, что свидетельствует о высоком уровне сходства.

Искусственный алмаз

Ценные свойства алмаза

Конечно, даже развитие аппаратуры и технологий еще не стало причиной полного перехода от природных камней на синтетические алмазы. Пока компании по в лабораториях руководствуются принципом «два из трех»:

  • качество;
  • размер;
  • рентабельность.

Два из трех критериев выбирается в процессе, но пока предел или идеал не достигнут, ученым есть к чему стремиться.

Большинство людей видят в магазинах алмазы уже в обработанном виде в качестве бриллиантов. Камни оправляются в драгметаллы и выступают в роли дорогостоящих украшений.

По химическому составу бриллиант является углеродом с особым строением кристаллической решетки. Происхождение минералов точно не известно. Существует даже теория космического происхождения алмазов. Наверное, поэтому сложно полностью повторить или воссоздать картину образования камня в лаборатории.

Первые попытки синтезировать камень начались после исследования структуры алмаза - она очень плотная, кристаллическая решетка состоит из атомов, соединенных ковалентными сигма-связами. Разрушить эти соединения легче, чем их сформировать.

Несмотря на то что бриллиант является украшением номер один, камень используется во многих сферах, помимо ювелирного дела. Именно этот фактор и натолкнул ученых на синтез искусственных камней. А еще алмаз имеет уникальные характеристики с точки зрения химии и физики:

  • Самая высокая твердость (10 из 10 по шкале Мооса). Даже состав сплава стали не настолько твердый, как алмаз.
  • Температура плавления вещества 800-1000 градусов Цельсия с доступом кислорода и до 4000 градусов Цельсия без доступа кислорода, с дальнейшим превращением алмаза в графит.
  • Алмаз используется в качестве диэлектрика.
  • У минерала самая высокая теплопроводность.
  • Камень обладает люминесценцией.
  • Минерал не растворяется в кислоте.

Выход на рынок синтетических алмазов может случиться в один момент и стать неожиданностью. Алмазная индустрия претерпит изменения, уменьшатся объемы продаж. Из камня начнут изготавливать полупроводники. Из-за высокой температуры плавления, полупроводники из алмаза можно разогревать до больших показателей, чем кремний. При температурах около 1000 градусов Цельсия кремний в микросхемах начинает плавиться и отключается, а алмаз продолжает работать.

Искусственный алмаз - действительно полезная вещь в науке и производстве. Среди ученых, которые занимаются синтезом алмазов для промышленности распространена такая поговорка: «Если ничего нельзя сделать из алмаза, сделайте из него бриллиант».

Методики создания вещества

Первые попытки получить алмаз искусственный начались еще в конце XVIII века, когда стало известно о составе камня, но технологии не позволяли воссоздать нужную температуру и давление для образования минерала. Только в пятидесятых годах XX века попытки синтеза вещества увенчались успехом. Среди стран, выращивающих алмазы, были США, ЮАР, Россия.

Оборудование для создания искусственных алмазов

Первые синтетические алмазы были далеки от идеала, но сегодня камни практически неотличимы от природных алмазов. Процесс выращивания является трудоемким и материально затратным. Существует несколько вариантов и форм синтеза алмаза:

  • Способ получения HPHT-алмазов. Эта методика близка к природным условиям. При ней необходимо соблюдать температуру 1400 градусов Цельсия и давление в 55000 атмосфер. В производстве используются затравочные алмазы, которые кладут на пласт из графита. Размер затравочных камней до 0,5 миллиметров в диаметре. Все компоненты размещают в специальном устройстве, напоминающем автоклав в определенном порядке. Сначала располагается основа с затравкой, потом идет сплав металла, который является катализатором, затем прессованный графит. Под воздействием температур и давления ковалентные пи-связи графита преобразуются в сигма-связи алмаза. Металл в процессе плавится, и графит оседает на затравку. Синтез продолжается от 4 до 10 дней, все зависит от требуемых размеров камня. Весь потенциал методики не раскрыт, и не все ученые доверяли этой технологии, пока не увидели созданные крупные кристаллы ювелирного качества. Огранка у полученных камней одинаковая.
  • Синтез CVD-алмазов. Аббревиатура расшифровывается, как «осаждение из пара». Второе название процедуры - пленочный синтез. Технология более старая и проверенная, чем HPHT-производство. Именно она создает промышленные алмазы, которые можно использовать даже для лезвий в микрохирургии. По технологии также нужна подложка, на которую помещается алмазная затравка и все это располагается в специальных камерах. В таких камерах создаются вакуумные условия, после чего пространство заполняется газами водорода и метана. Газы разогреваются с помощью СВЧ-лучей до температуры 3000 градусов Цельсия, и углерод, который был в метане, оседает на основу, которая остается холодной. Синтетический алмаз, созданный по этой технологии, получается более чистым, без примесей азота. Эта методика напугала большинство концернов, добывающих камень в природе, поскольку она способна дать чистый и большой кристалл. Такой камень практически не будет иметь металлических примесей и его сложнее будет отличить от натурального. Алмазы, полученные по этой технологии, можно будет использовать в компьютерах в качестве полупроводника вместо кремниевых пластин. Но для этого необходимо усовершенствовать методику выращивания, поскольку пока размеры получаемых алмазов ограничены. Сегодня параметры пластин доходят до отметки 1 сантиметр, но через 5 лет планируется достижение планки в 10 сантиметров. А стоимость карата такого вещества не будет превышать 5 долларов.
  • Способ взрывного синтеза - одна из последних задумок ученых, позволяющих получить искусственный алмаз. Методика дает возможность получить искусственный камень за счет детонации взрывчатых веществ и последующего охлаждения после взрыва. Кристаллы в результате получаются мелкие, но способ приближен к естественному образованию минералов.

А еще недавно возникло направление, позволяющее создавать мемориальные алмазы. Эта тенденция позволяет увековечить память о человеке в камне. Для этого тело после смерти поддается кремации, а из праха изготавливается графит. Далее графит используется в одном из способов синтеза алмазов. Так, камень содержит в себе останки тела человека.

Поскольку все способы дорогостоящие, нередко в ювелирном деле используют не искусственные вещества, а подделки или другие разновидности камня. Стекляшка среди алмазов - самая дешевая и устаревшая практика. На сегодняшний день она неудачная, поскольку распознать подлинник от подделки можно легко - достаточно царапнуть камень или посмотреть на игру света. Чаще всего в качестве бриллиантов продают фианиты.

Перспектива развития синтеза алмаза

Будущее синтетического алмаза начинается именно сегодня. Искусственный минерал стал символом времени, и вскоре у людей появится доступ к недорогим и красивым изделиям. Но пока технологии находятся на стадии развития и совершенствования. Например, лаборатория в Москве способна выращивать по вышеперечисленным технологиям до 1 килограмма алмазов в год. Конечно, этого мало для обеспечения потребностей промышленности. Дальнейшие обработки добываемых камней также требуют времени и оборудования.

Поэтому пока ведется традиционными способами, и никто не отказывается от разработки новых месторождений, открытия кимберлитовых трубок. Как только появилось производство искусственных алмазов, компания De Beers - практически монополия на рынке алмазов - начала переживать о своем бизнесе. Годовой оборот концерна составляет до 7 миллиардов долларов в год. Но пока синтетические камни не являются конкурентами натуральным алмазам, а их доля на рынке достигает всего 10%.

А еще, вместе с синтезом, развивалась и геммология, которая позволяет рассказать о происхождении камня. Синтетические алмазы можно легко отличить от натуральных. В качестве признаков выделяют:

  • включения металлов в камнях из лаборатории;
  • секторы роста, которые определяются в цветных алмазах;
  • разный характер люминесценции алмазов.

Технологии и знания ученых совершенствуются с каждым днем. Процесс запущен, над ним работают специалисты. В скором времени мир увидит результаты и, возможно, даже откажется от традиционной добычи алмазов из недр земли.

В этой статье:

Начали делать не так давно. Этот процесс не является таким уж лёгким, а требует серьезных затрат. Применение такого искусственного кристалла не ограничивается только ювелирным делом, алмазы очень нужны в технике. Например, из них изготавливают специальный режущий инструмент. Для того чтобы понять, что собой представляют искусственные алмазы, нужно для начала разобраться, что такое настоящий алмаз.

Алмаз - самый твердый минерал в мире

Прежде всего, то, что мы видим в ювелирном магазине - это бриллиант. Бриллиант - это алмаз, который прошел специальную предварительную обработку ювелирами. C точки зрения химии, он представляет собой углерод кубической формы и строения кристаллов. Что интересно, углерод в зависимости от того, как построена структура, может выступать в виде многих веществ, которые имеют разные свойства и применение.

Искусственные алмазы

Например, всем известно, что сейчас в мире переходят на нанотехнологии. Нанотехнологиями называют такие технологии, суть которых построена на объектах очень малой величины - тысячных долях микрона. Одними из таких объектов являются нанотрубки. Так вот, наименьшие нанотрубки, а именно, самого маленького диаметра, также являются формой углерода. Дело в том, что один атом вещества может объединяться с пятью другими, что и так представляет собой компактную структуру. Среди атомов, которые обладают такими возможностями, имеет самую маленькую массу, а соответственно и радиус атома.

Если атомы углерода объединяются во что-то похожее на мяч для футбола - это называться фуллеренами. Фуллерены и нанотрубки, а также монослой углерода - графен, за получение которого недавно вручили Нобелевскую премию, в будущем, скорее всего, будут очень широко использоваться в технике. Они интересны своими сверхпрочными свойствами, а также проводимостью, низким сопротивлением и размерами. Наибольшая ценность нанотрубок - выступать как проводниками, так и полупроводниками, в зависимости от того, как ориентированы атомы между собой. За этим будущее электроники.

До сих пор ученые не пришли к однозначному выводу о том, . Основная версия говорит о том, что кристаллы формируются глубоко в Земле (более чем в 200 километрах) под большим давлением и огромной температурой. А потом уже магма их выбрасывает на поверхность. Существует также версия, что алмаз представляет собой внеземную структуру и прилетает на Землю вместе с метеоритами. Еще одна версия тоже говорит о космическом происхождении: якобы бриллианты формируются при падении метеорита, когда создается высокое давление.

Камни очень редкие и красивые. Ценятся они не только за красоту, но и за то, что обладают уникальными свойствами:

  • алмаз имеет самую высокую твердость среди минералов;
  • температура его плавления доходит до 4000 градусов;
  • теплопроводность самая высокая среди всех известных твердых тел;
  • он относится к диэлектрикам;
  • имеет уникальное преломление света, под действием различных лучей может начать светиться;
  • не растворяется в кислоте.

История получения минералов

В 1797 году было открыто, что алмаз состоит из чистого углерода. С тех пор начались попытки повторить процесс в условиях лаборатории. Наиболее успешными стали работы Ханней и Муассана, в 1893 году они нагревали их до температуры 3000 градусов Цельсия с высокой скоростью нагрева и добавлением железа. В отличие от Ханнея, который использовал трубку для нагрева, Муассан использовал электродуговую печь со стержнями углерода, располагавшимися внутри блоков извести.

Расплавленное железо после нагрева быстро охлаждали водой. Все это делали для того, чтобы обеспечить высокое давление. Подобные эксперименты повторялись и в дальнейшем. Например, в 1909 году успеха достиг Крукс и через несколько лет об этом заявил. Однако позже такое заявление было опровергнуто.

Первый официальный искусственный алмаз был создан в 1926 году. Для его создания были объединены все методы, которые перечислены выше. Сейчас этот образец до сих пор хранится в музее в Соединенных Штатах Америки.

Но это еще был не тот образец, который можно было бы поставить на серийное производство. Наибольший вклад в создание и разработку методов получения бриллиантов вложил Сэр Чарльз Алджернон Парсонс - именно он на протяжении 40 лет пытался повторить самые первые опыты Ханнея и Муассана. Он был очень кропотливым и сохранил полученные образцы для дальнейших исследований. Позже заявил, что всё, что было создано до этого, не является искусственным бриллиантом.

В 1941 году к разработке методики получения алмазов присоединяется компания General electrics. У них получилось нагреть углерод до 3000 градусов и получить давление 5 ГПа. Однако им помешала Вторая мировая война, и только через 10 лет они возобновили работы по проекту. Во время этих разработок использовались наковальни из карбида вольфрама в гидравлическом прессе. Однако все условия синтеза были настолько неопределёнными, что эксперименты повторять не удавалось.

В 1954 году был создан первый искусственный алмаз, который годился для коммерческого синтеза. Однако он был очень маленького диаметра, всего доли миллиметра, поэтому не мог быть использован в украшениях, зато хорошо подходил для промышленности. Описание работы по его созданию было опубликовано в самом престижном научном журнале Nature.

С 1953 года компания ASEA - производитель электроники из Швеции - тоже начала заниматься независимым синтезом алмазов. Работа шла, используя громоздкий аппарат, который поддерживал давление на уровне 8,4 ГПа на протяжении часа. Но им тоже удалось получить экземпляры только маленького размера.

В Корее в восьмидесятых годах появился конкурент по созданию алмазов - компания «Ильин Алмаз». Она заполучила коммерческую тайну от General Electric и смогла синтезировать синтетические алмазы в 1988 году. После этого вышел и Китай на рынок с огромным количеством предприятий.

Как сегодня выращивают алмазы?

В промышленном производстве сейчас более широко используется технология выращивания кристаллов при высоких давлениях и температурах, называемая HPHT, а также технологии CVD. Менее употребляемыми методиками считаются синтез монокристаллов алмаза при взрыве и метод получения микронных алмазов из суспензии частиц графита в органических растворителях под действием ультразвука.

Технология HPHT включает в себя получение алмазов при температуре 1500 градусов и давлении 50 атмосфер. Установка, которая представляет собой гидравлический пресс, сжимает специальный контейнер, внутри которого находится металлический расплав и графит. В качестве расплава используется железо, никель кобальт или другие металлы. На подложке размещаются затравки - небольшие кристаллы алмаза. Сквозь камеру проходит ток, который нагревает расплав до нужной температуры. В таком случае металл служит растворителем или катализатором кристаллизации.

Кристаллы выращиваются на заправке в форме алмаза. Процесс выращивания более-менее крупного или нескольких мелких кристаллов длиться в среднем около 12 суток. Сейчас производство искусственных алмазов доходит до выпуска миллиардов каратов в год. В 1970, используя эту технологию, впервые научились добывать камни маленького веса и качества.

С 1960-х годов начали разработку более дешевой технологии получения алмазов CVD, что означает Chemical Vapor deposition, которая представляет себя осаждение из фазы газа.

Синтез проходит при осаждении углерода на подложку в среде из водородного газа, который ионизируется с помощью излучения и высоких температур. При осаждении поликристаллический алмаз (кремний) получает пластины, имеющие ограниченное применение в электронике и оптике.

Скорости роста абсолютно разные, которые могут достигать и 100 микрометров в час. Толщина пластин обычно ограничена 2-3 миллиметрами, поэтому полученные алмазы можно использовать в качестве ювелирных, но не превышающих 1 карата. Возможности этого момента начали популяризоваться в 2000-х и привлекли внимание как стартапов, так и больших корпораций, что дало сильный толчок к развитию метода.

Потенциал HPHT в последнее время был сильно недооценен, и все внимание и ресурсы были сосредоточены на совершенствовании метода химического осаждения. Эта технология, как казалось, была неприменима для выращивания кристаллов большого размера и высокого качества. Но в последнее время технологии совершенствуются и получаются искусственные алмазы такого качества и размера, какими раньше могли быть только натуральные.

Которые чаще всего имеют прозрачные цвета, заключается еще в том, что синтетические обладают легким оттенком. Азот, который рассеивается в структуре решетки во время роста алмаза, поглощает голубой цвет, в результате чего синтетический алмаз приобретает желтоватый оттенок.

Другие заменители бриллиантов

Помимо искусственных бриллиантов, широко используются их заменители, которые вошли в ювелирную промышленность в семидесятых годах прошлого века. Сначала Физический институт Академии Наук получил фианиты, которые представляли собой . Это, так сказать, стекляшка среди алмазов. Позже появились такие , как хрусталь, циркон, белый сапфир. Особенной популярностью пользовались такие камни в изготовлении перстней в викторианском стиле.

Также появился такой заменитель бриллиантов, как нексус, который представляет собой соединения углерода с другими веществами и отличается прочностью и твердостью.

Для изготовления фианитов используется диоксид циркония. Он считается наименее прочными из всех заменителей бриллиантов, а соответственно, и самым дешевым. Муассанит, который синтезируется из карбида кремния и является самым прочным из всех камней, похожих на бриллианты, и обладает такими внешними характеристиками, что его даже сложно отличить от настоящего камня. Отличие всех искусственных камней от натуральных, которое можно заметить невооруженным глазом - это стоимость, для остальных отличий необходимо оборудование и опыт.

Однако иногда синтетические бриллианты по цене не уступают натуральным, потому что огромные затраты расходуются на их производство. Основное отличие искусственного бриллианта от натурального в том, что в натуральных бриллиантах присутствуют неоднородности и включения, которые отсутствуют у искусственно полученных минералов.

Приобрести украшения из синтетического бриллианта можно, и это будет значительная экономия по сравнению с натуральным. Если вы хотите купить украшение максимально недорого, то отдавайте предпочтение фианитам. Их сияние не уступает натуральному бриллианту, но у него немного хуже характеристики прочности и твердости, что влияет на эксплуатационные свойства. Муассанит обладает наиболее ярким блеском, что в некотором роде создает эффект дискотеки. Фианит не обладает таким сиянием, как алмаз искусственный или муассанит, но лучше отбрасывает блики.

Муассаниты практически не поддаются внешнему воздействию, а вот фианиты со временем царапаются и впитывают масло. Кроме того, если за ними не ухаживать, на поверхности камня скапливаются царапины, он становится мутным.

Таким образом, технология получения бриллиантов до сих пор находится в стадии разработки. В отличие от рубинов и сапфиров, получить бриллиант любого размера или качества невозможно, и часто он может быть дороже оригинального, так как затрачивается огромное количество времени и ресурсов.

Алмаз, так же как и графит, по своему химическому составу пред­ставляет собой чистый углерод. Они являются полиморфными модифика­циями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток.

Алмаз был известен в далеком прошлом, широко применяется в на­стоящем, велики перспективы его использования в будущем. С развитием техники, когда возникла необходимость в новых видах минерального сы­рья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время су­ществование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовления тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порош­ки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что ос­новано прежде всего на их чрезвычайно высокой твердости. Б последние годы все больше привлекают внимание другие исключительные свойства алмаза: его.электрические свойства при использовании в качестве полупро­водников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать нако­пителем и хранителем обширной информации.

Плотность алмаза 3,513 г/см 3 , микротвердость 100,6 ГПа, модуль уп­ругости 825 ГПа, удельное электросопротивление 10 12 - 10 14 Ом-см. Кроме углерода в кристалле алмаза всегда присутствует некоторое количество примесей, составляющих не более десятых долей процента. Основные хи­мические элементы - примеси в алмазе: азот, кислород, водород, Fe, Ti, Mn, Si,Al.

Как известно, основные факторы, способствующие образованию ал­мазов - высокие давления и температура, которые имеют место в земных недрах на большой глубине.

Искусственные алмазы начали получать в целом ряде стран в сере­дине 50-х годов XX века. Внедрение синтетических алмазов избавило от необходимости дробить большую часть природных алмазов для изготовле­ния порошков, паст и абразивного инструмента. Выпускаются синтетиче­ские алмазы марок АСО, АСР, АСВ, АСК, АСС, САМ, АСБ и АСПК, а также микропорошки на основе синтетических алмазов АСМ и АСН разме­ром от 1 до 630 нм.

Применяются синтетические алмазы главным образом для изготов­ления различных видов абразивного, лезвийного и бурового инструмента. Важнейшими областями применения алмазных инструментов являются об­работка инструментов и деталей машин из металлокерамических твердых сплавов, бурение геологических и эксплуатационных скважин в твердых и абразивных породах, обработка изделий из гранита, мрамора и др. Наибо­лее широко порошкообразные синтетические алмазы применяются для из­готовления шлифовальных кругов, предназначенных для доводки и заточки твердосплавного металлорежущего инструмента.

В настоящее время известны три метода синтеза алмазов:

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким статическим давле­нием и температурой в.течение времени, измеряемого по крайней мере не­сколькими секундами; .

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким динамическим дав­лением и температурой в течение времени, измеряемого микросекундами и долями микросекунд;

в области термодинамической стабильности графита, осущест­вляемой при атмосферном и меньшем давлениях и высокой температуре эпитаксиальным наращиванием алмаза на затравках.

Основная масса синтетических алмазов производится во всем мире по первому методу, т.е. при высоких статических давлениях. Отрицатель­ной чертой второго метода является кратковременность действия высоких давлений и температур, из-за чего зародившиеся кристаллы новой фазы лишены возможности длительного роста и образуют поэтому весьма мелкие частицы.

Третий метод получения алмазов требует очень точного соблюдения условий проведения процесса. В противном случае на поверхности затра­вочных кристаллов будет образовываться как алмаз, так и графит, а затем графит покроет всю поверхность, и рост алмазной фазы прекратится.

Рациональное сочетание трех условий, необходимых для синтеза ал­мазов (температуры, давления и наличия определенной среды) лежит в ос­нове методов производства синтетических алмазов при высоких статиче­ских давлениях, используемых во многих странах мира.

Многочисленные исследования отечественных и зарубежных уче­ных в области синтеза алмазов позволили предложить механизм превраще­ния графита в алмаз, который подробно описывается в различных литера­турных источниках и объясняется перестройкой связи электронной конфи­гурации sp в sp 3 .

Как уже было сказано выше, для синтеза алмазов используются уг-леродсодержащие материалы: стеклоуглерод, кокс, синтетические смолы и, конечно, графит. Однако следует знать, что при синтезе алмазов исходное сырье обязательно проходит стадию графитации. Углеродсодержащее ве­щество до термообработки должно быть максимально однородным по хи­мическому составу. Кроме того, распределение областей когерентного рас­сеяния (ОКР) по размерам должно быть достаточно узким.

Нецелесообразно использовать в качестве исходного углеродсодер-жащего вещества сажу, так как она очень мелкодисперсна. Это затрудняет набивку камер аппаратов высокого давления.

На практике в технологии синтеза алмазов используются определен­ные марки графита МПГ-6, ГМ-ОЗОСЧ, МГ-ОСЧ и т.д. В этом случае обра­зуются алмазы с высоким выходом и хорошего качества. Качество синтези­рованных алмазов определяется их размерами и твердостью.

Поскольку синтез алмазов протекает при высоких давлениях и тем­пературах, то необходимо иметь надежные аппараты для твердофазного синтеза, в которых достаточно длительное время можно поддерживать и высокие давления, и температуры. Нужно уметь измерять такие давления и температуры, определять степень их однородности в реакционной зоне.

Синтез алмазов проводится в специальных камерах, изготовленных из высокопрочных материалов. Такими материалами являются твердые сплавы на основе карбида вольфрама и кобальта. Подъем температуры в подобных аппаратах осуществляется пропусканием электрического тока через нагревательное устройство.

Конструкции камер высокого давления, где создаются температуры от 727°С до 2227°С весьма различны. Среди множества аппаратов такого рода рассмотрим кратко три вида наиболее распространенных конструкций: многопуансонный аппарат, аппарат типа «цилиндр - поршень» и аппарат типа «наковальня с лункой».

Представителем первого вида является тетраэдрическая установка схема которой представлена на рис. 1.14. Камера состоит из четырех пуан­сонов с усеченными трехгранными концами. Торцы этих пуансонов имею: вид равносторонних треугольников и ограничивают тетраэдрический объ

Рис. 1.14. Схема тетраэдрического аппарата высокого давления; а -- схема расположения 4 пуансонов; б - установка в

Сборе, верхний пуансон удален

С помощью четырех гидравлических прессов, симметрично распс ложенных в пространстве, пуансоны двигаются вдоль своей оси, образу рабочий -объем. В него помещается контейнер из рабочего вещества, вь: полненный в виде тетраэдра.

Рабочее вещество - это вещество, посредством которого передаете давление во всех установках, где проводятся высокотемпературные иссж давания при высоких давлениях. Оно должно быть твердым телом с мало сжимаемостью и удовлетворять следующим условиям:

иметь высокую температуру плавления и малую теплопровод ность;

не проводить электрический ток; быть химически инертным;

быть достаточно пластичным, чтобы с его помощью можно бь ло получать более или менее равномерное (квазигидростатическое) давл(ние в определенном объеме.

Нагреватель (чаще всего графитовая трубка) заполняется реакцию] ной шихтой и вкладывается в тетраэдрический контейнер так, чтобы конц нагревателя выходили из противоположных ребер тетраэдра. При сближ-нии пуансонов они сжимают тетраэдрический контейнер. Часть рабоче) вещества вытекает в зазоры между пуансонами, образуя уплотняющие пр< кладки. Электрический ток для создания нужной температуры подводится нагревателю через пуансоны, соприкасающиеся с нагревательным устрой­ством.

В настоящее время для изготовления контейнеров, работающих при высоких давлениях и температурах (10 ГПа и 2700°С), применяют в основ­ном четыре вещества: тальк или стеатит 3MgO-4SiOrH 2 O, пирофиллит Al 2 O 3 -4Si0 2 -H 2 O, литографский камень 95% СаСОз + 5% смеси 8Ю 2 , А1 2 0 3 , Fe 2 0 3 и катлинит - красную кремнистую сцементированную глину, место­рождения которой находятся в США. Они несколько различаются между собой по механическим свойствам и по термоустойчивости.

Контейнеры могут изготовляться как из блоков соответствующих минералов, так и прессованием порошков из этих минералов с употребле­нием различных связок (жидкое стекло, бакелит и др.).

Описанная тетраэдрическая камера требует приложения к ней уси­лия прессового устройства по четырем осям, что вызывает немалые трудно­сти, поэтому создают камеры, где сжатие осуществляется одним поршнем от какого-либо прессового агрегата. Ввиду этого значительное распростра­нение получили аппараты типа «цилиндр - поршень», так называемые белт-аппараты (belt 1 - пояс). Схема аппарата показана на рис.1.15.

1.15. Схема аппарата типа белт: 1 - - пуансон, 2 - - кон­тейнер

Рис. 1.16. Схема камеры высокого давления с поддержи­вающими кольцами (на­ковальня с лункой): 1 -пуансон, 2 - - стальное кольцо, 3 - контейнер, 4 - образец, 5 - зазор

Основными частями его являются два конических пуансона (1) из твердого сплава, на которые в несколько слоев надеты стальные бандажи. Их торцы входят в полый цилиндр из твердого сплава, также упрочненный набором бандажей. Внутрь цилиндра помещается цилиндрический контей­нер из рабочего вещества (2), в котором находится нагреватель с реакцион­ной шихтой. Нагревателем является трубка из электропроводящего мате­риала, ось нагревателя совпадает с осью контейнера.

Вся установка помещается в гидравлический пресс. При сдвигании пуансонов рабочее вещество пластически деформируется, часть его затека­ет в зазоры между цилиндром и пуансоном и надежно запирает камеру сжа­тия. Благодаря образующимся прокладкам из рабочего вещества пуансоны оказываются электрически изолированными от цилиндра.

Нагрев осуществляется пропусканием электрического тока через на­греватель, соприкасающийся с пуансонами, к которым подсоединяются электроконтакты от источника тока.

В установке типа «белт» возможно получать давления около 20 ГПа и температуры порядка 2700°С и можно иметь большой реакционный объ­ем. Однако детали данной конструкции весьма сложны в изготовлении, и эксплуатация ее требует высокой квалификации персонала. Поэтому в СССР была разработана более простая конструкция типа «наковальни с лункой», которая получила широкое распространение не только в лабора­торных исследованиях, но и в промышленности.

На рис. 1.16 представлена схема описываемого аппарата в разрезе. Аппарат включает два одинаковых пуансона из твердого сплава (1), каждый из которых в торце имеет центральное углубление (лунку) в виде сегмента сферы, окруженное поверхностью, обработанной на конус. По боковой по­верхности каждый пуансон (1) скреплен стальным кольцом (3). Между тор­цевыми поверхностями пуансонов помещается контейнер (2), выполненный из соответствующего рабочего вещества. Образец (4) собирается вместе с нагревательным элементом и вставляется в полость контейнера. Цифрой (5) обозначен зазор между обработанными на конус, периферическими участ­ками поверхности пуансонов.

Высокие давление (до 7 ГПа) и температура (до 2200°С) получаются следующим образом.. Образец (углеродсодержащий материал) вместе с на­гревательным элементом (4) помещается в контейнер (2), который собран­ным устанавливается в камеру высокого давления, образованную обращен­ными друг к другу торцами пуансонов (1). Камера в сборе закладывается в гидравлический пресс. При сближении пуансонов периферическая часть контейнера (2) постепенно деформируется и заполняет зазор (5). Пластиче­ское течение материала контейнера (2) прекращается, когда при возраста­нии сжимающего усилия пресса достигается необходимая величина давле­ния в камере. Электрическая мощность, необходимая для нагревания образ­ца.(4). подается на, нагреватель через пуансоны (1), для чего один из пуан­сонов должен быть электрически изолирован от остальных частей аппара­туры.

В данном случае твердосплавная деталь имеет линзообразное углуб­ление и называется «наковальней с лункой» (НЛ), а контейнер напоминает формой чечевицу. Для создания более высоких давлений камера типа НЛ была изменена. На конусной поверхности пуансона были сделаны кольце­вые канавки в виде разрезанного по большому диаметру тора (рис. 1.17).

Это не влияет на принцип действия камер, но значительно повышает стой­кость твердосплавной детали к разрушению. В таких аппаратах можно дос­тичь давлений в 13 - 14 ГПа. Конструкция получила наименование «нако­вальня с лункой и тороидом (НЛТ)», а контейнер для нее - «тороид» (рис. 1.18).

Рис. 1.17. Схема камеры высокого ис 1.18. Осевой разрез контейнера давления типа тороид типа тороид

Важным обстоятельством, сильно влияющим на характер протека­ния синтеза алмазов в камерах высокого давления с твердой средой, являет­ся возникновение градиентов температуры и давления в реакционной зоне, что усложняет технологию процесса. Истинная величина температуры мо­жет быть определена непосредственно в камере синтеза термопарой. В диа­пазоне температур до 930°С применяются платино-платинородиевая и для более высоких температур - вольфрам-рениевая термопары.

Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200°С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются: марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, ката­лизаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Mo, Nb с металлами Си, Ag, Аи. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом.

Следует отметить, что в синтетических алмазах, получаемых с по­мощью катализаторов, всегда наблюдаются различные включения.

Нельзя не сказать о возможности получения алмаза из газовой фазы при низких давлениях, т.е. о так называемом эпитаксиальном синтезе веще­ства.

Наряду с получением алмаза в условиях, когда он является термоди­намически устойчивым веществом (при высоких давлениях), алмазы можнс синтезировать в области его неустойчивости, т.е. при относительно низких давлениях. Для этого проводят термическое разложение углеродсодержа-пщх газообразных веществ, например метана, ацетилена, оксида углерода и др. В реакционный сосуд предварительно вводят кристаллы алмаза. Если имеется грань кристалла алмаза, вблизи которой концентрация атомов уг­лерода в виде пара превышает соответствующую равновесную, то избыток атомов углерода будет осаждаться на этой грани, воспроизводя кристалли­ческую структуру алмазной решетки. Процесс этот очень медленный. Кро­ме того, рабочие условия благоприятствуют образованию на поверхности подложки графита, который нужно периодически удалять с нее. Удельная производительность таких установок невелика, и сам процесс пока не на­шел промышленного применения.

В области термодинамической устойчивости алмаза его можно по­лучать в виде алмазной пыли из углеродсодержащих веществ во взрывной волне. Этот вариант синтеза следует отнести к методу динамического по­гружения.

Всем давно известен такой прекрасный камень, как бриллиант. Его история насчитывает более 3,5 миллиарда лет. Существует много версий его происхождения. Он обладает невероятным блеском и прочностью, чем и заслужил такую популярность. Существует искусственный и натуральный бриллиант. Так как последний имеет большую рыночную стоимость, создали искусственный камень. Он немного дешевле, но не менее привлекательный. Искусственный бриллиант - камень, который на сегодняшний день пользуется большим спросом. Из него изготавливают различные украшения, которые имеют непревзойденный вид и способны покорить любого ценителя прекрасного.

Описание

Искусственный бриллиант - это заменитель настоящего. Данного вида камень - более доступный по цене, так как настоящий не каждый может приобрести. В наше время благодаря высокотехническому оборудованию можно изготавливать синтетический камень. Он по внешнему виду мало чем отличается от настоящего. Только ювелиры могут отличить подделку от оригинала. Существует несколько видов искусственного камня - это так называемый синтетический минерал и заменитель алмазов. Долгое время ученые по оригинальной технологии создавали такие камни. И только в далеком 1892 году Анри Муассан придумал совершенно новый метод. Он использовал очень высокие температуры, которым подвергался углерод. Так, благодаря этому методу появился на свет впервые искусственно выращенный бриллиант. На сегодняшний день уже существует несколько подобных методов. Первый способ основан на давлении и высокой температуре, а второй связан с применением газовой среды.

Как выращивают камень?

Выращивают искусственный бриллиант в специальной камере. Алмазный зачаток кладут под пресс, соблюдается специальный температурный режим. Спустя семь дней по такому методу можно увидеть настоящий алмаз. Если качество не устраивает изготовителя, то камень снова по такой же технологии обрабатывают. Благодаря прессу и высокой температуре можно получить аналог довольно высокого качества.

Второй способ основан на применении газовой среды. Алмазное семя помещают в камеру с низким давлением. Испаренный углерод и кислород накладывают на частичку бриллианта слоями. Выращивание этими способами позволяет получать аналоги высокого качества, которые мало чем отличаются от настоящего бриллианта. На создание таких камней уходит всего два дня. Когда-то бриллианты заменяли фианитами, муассанитами. Хрусталь и циркон использовали для колец. Так они выглядели изысканно и утонченно на изделиях.

Общие характеристики искусственного камня

Самый известный искусственный бриллиант - это нексус. Он состоит из химического сращивания с другими соединениями. Стоит отметить, что данный аналог обладает высокой прочностью. Производители дают на них практически пожизненную гарантию.

Фианит - самый популярный искусственный бриллиант, созданный в лаборатории. Изготовлен из оксида и циркония. Он имеет красивые внешние данные, но низкую прочность и, соответственно, ниже цену. Если приобрести фианит, то нужно знать, что он со временем может царапаться и будет выглядеть не так, как при покупке. Свойство данного камня - впитывать масла, и это повредит его характеристики. Поэтому за ним нужно тщательно ухаживать.

Искусственно выращенный бриллиант называется муассанит. Он по праву считается самым красивым камнем. Он переливается на солнце и обладает неимоверным блеском. Благодаря ему он и приобрел такую популярность. Соответственно, и по цене он существенно отличается от других бриллиантов, так как он еще и обладатель высокой прочности. Простому человеку не отличить его от настоящего камня. Многие искусственные минералы могут стоить как настоящие. Это касается особенно белых, прозрачных камней, которые с трудом можно отличить от аналога. Следует отметить, что искусственные камни безупречны. Они не имеют совершенно никаких вкраплений и дефектов. Они имеют 100% прозрачность, поскольку выращены искусственно. При этом натуральные камни в природе не бывают идеальными, очень редко когда камень прозрачный на 100%. Искусственные стоят дороже, чем заменители. Поэтому те, кто желает сэкономить на изделии, могут приобрести украшения с заменителем.

Название искусственного бриллианта - муассанит. Такой минерал можно отличить от настоящего камня своим блеском, это его и выдает. Настоящий лишен подобного качества. Конечно, лучше покупать прозрачный искусственный бриллиант. Но если хотите сэкономить, можно приобрести цветные изделия. На сегодняшний день существует огромный выбор различный видов камней, на любой вкус и карман.

Кому подходит камень? Магические свойства

Энергетика бриллианта очень сильная, как и его магические свойства. Носить его желательно людям с сильным характером и духом. Если это фамильная ценность, то он как оберег помогает в различных делах и трудностях. Если это подарок, то очень важно, чтобы женщине его преподнес именно мужчина. Стоит отметить, что одинокой даме не рекомендуется носить данного вида камень. Он может приносить удачу только счастливым людям, супружескую пару он способен оберегать от предательства и обмана, сохранит их любовь на долгие годы.

Астрологи уверены, что бриллиант занимает первое место в зодиакальном калейдоскопе. Он хорошо подходит знакам огненной силы. Также он способен поддерживать равновесие и хорошее настроение. Не стоит его носить таким знакам зодиака: Близнецам, Весам, и Водолеям. Для них он будет действовать противоположно и приносить в их жизнь тоску и уныние.

Лечебные свойства

Также есть версия, что бриллиант обладает лечебными свойствами: укрепляет иммунитет, понижает температуру, утоляет головную боль, борется с бессонницей. Хорошо влияет на нервную систему, может излечить психические заболевания, маразм, склероз. Благотворно влияет на здоровье женщины. Бытует мнение, что зеленый камень помогает женщине забеременеть, облегчат период вынашивания малыша и процесс родов.

Изделия из искусственных камней

Кольцо с искусственным бриллиантом - достаточно красивое украшение. Например, изделие делают с муассанитом. Идеально чистый прозрачный самоцвет позволяет создавать настоящие ювелирные шедевры, от которых трудно отвести глаза. Оптические параметры камня делают его неимоверно сверкающим, способным ослепить своей красотой. Камни в кольцах всегда достаточно большие и прозрачные, не имеющие зрительного отличия от натуральных.

Искусственный бриллиант часто используют для изготовления обручальных колец. Такие изделия являются лидерами продаж. Данного вида камни идеально подходят для ежедневного ношения. Также они будут ярким напоминанием о самом важном и незабываемым дне в жизни. Ухаживать за таким кольцом очень просто. Его периодически нужно мыть с мылом в теплой воде и протирать нашатырным спиртом.

Серьги с искусственным бриллиантом, подвески, браслеты могут иметь один камень или множество маленьких. Все они обладают разными формами, все зависит от фантазии ювелира. Можно заказывать изделия по индивидуальному дизайну. Возможно, вы хотите одинаковые изделия с вашей второй половинкой или напоминание о каком-то важном дне, значимой для вас даты, события.

Браслеты же с муассанитом выглядят особенно роскошно. Ведь в одном изделии такое множество роскошных камней! Конечно, и цена его существенно отличается от других изделий. Но бывают браслеты просто из золота и с подвеской с одним камнем, что также оригинально смотрится. Цена искусственного бриллианта иногда немного дешевле настоящего, все зависит от того, какой он формы и цвета. Примерно 50 - 100 долларов за карат.

Свойства искусственного камня

У данного камня совершенно нет дефектов, он кристально чистый, достаточно твердый, имеет высокую оптическую дисперсию, а также обладает высокой теплопроводностью. Последнее довольно важно для технической примеси. Все остальные характеристики зависят от условий, в которых он был создан.

Кристаллическая структура камня

Алмаз может быть одним большим камнем. А может и иметь множество сросшихся кристалликов. Большие камни широко применяются на ювелирных украшениях и пользуются большим спросом. Поликристаллические алмазы, сделанные из множества мелких зерен, хорошо видны и рассеиваются при солнечном свете, их используют в промышленности как режущий предмет.

Твердость бриллианта

Синтетические бриллианты имеют самую высокую твердость. Слово "твердость" подразумевает под собой сопротивление вдавливанию. Она напрямую зависит от чистоты, наличия дефектов в кристаллической решетке и ее ориентации. Твердость нанокристаллических алмазов может быть 30-70%.

Примеси и включения

Каждый алмаз имеет какие-то примеси из атомов углерода. Они обнаруживаются в достаточном количестве, чтобы определить их аналитическим методом.

Примесей обычно пытаются избегать, но и бывает, что их намеренно вводят. Это делается, дабы изменить свойства алмаза. Когда камни выращиваются в жидкой среде из металла, то это приводит к формированию примесей природных металлов.

Как отличить?

Многие задаются вопросом о том, как отличить искусственный бриллиант от настоящего. Существует несколько вариантов. Искусственный камень может реагировать на магнит, он идеально прозрачный, под микроскопом можно увидеть зернистость, на солнце он не сильно блестит. Если положить его на лист белой бумаги, то вдоль рудниста будет видно белую полосу. Но всегда лучше обратиться к специалисту. Так, невооруженным взглядом, сложно отличить подлинность этих камней.

Небольшое заключение

Теперь вы знаете, что представляет собой искусственный бриллиант, как его выращивают. Кроме этого, мы рассмотрели свойства данного камня. Надеемся, что эта информация была вам не только интересна, но и полезна.